
1

ROBOCUPJUNIOR SOCCER 2023

TEAM DESCRIPTION PAPER

LNX Robots

Abstract

Our robot’s main chassis consist of two PCBs mounted horizontally, attached together with 3D printed covers
made in Fusion 360. On-board Raspberry Pi 4 handles object detection, logging and main playing logic. Teensy
4.1 acts as an additional IO processing unit – controls all our 4 motors and reads from 16 line sensors.

1. Introduction

1. Team
We are a team of 4 high school students from Bratislava, Slovakia

2. Project Planning

1. Overall Project Plan
It all started as an idea of a robot that would have two PCBs:

• Bottom board

o Line sensors

o Motor drivers

o DC-DC converter

o Microcontroller (to send information to a Raspberry Pi on top board)

• Top board

o Raspberry Pi (to process images from camera)

o Compass

It was considered a good idea to use the whole potential of Raspberry Pi, so multiple processes and

threads were going to be utilized.

The software needed to be clean and multiple features needed to be as separated as possible to prevent

bugs.

Ideas for kicker and dribbler were abandoned since the development of these two parts would take a lot

of time – it is preferred to have 100 % functional robot instead of hardware that is often unreliable. None

of our team members had any experience with solenoids or designing mechanical things, such as dribbler.

2. Integration Plan

From the start of our robots development, a lot of different version for hardware were made. We started

working on the hardware right after previous year’s tournament, in June 2022.

We originally planned making only one robot for Slovakian RoboCup Junior, but things went well with the

first one, so we decided to create another one.

Name Role

Tomáš Kováč hardware (PCB)

Mathias Suroviak software (structure, playing strategy)

Matúš Mišiak hardware (chassis), software (interfaces)

Matej Repa hardware (movement)

2

Version 1

It was supposed to run on Arduino Mega and use MC33886DH as motor drivers. However, it could have

never seen the light of day, since more experienced people from an electronics summer camp

recommended us better alternatives: Teensy 4.1 and VNH5019.

Version 2

We decided to use QRE1113 as line sensors since we had

success with them on line follower robots.

To power the robot, we chose 3s Li-Po batteries and XL4015

switching regulator.

We did not want to fully commit and buy everything needed

for the bottom board out of fear of the design not being

good enough. So, the first “working” version of a robot was

a bottom board with:

• 2 motors

• 2x VNH5019

• 4x line sensors

• Teensy 4.1

We heard that wheels are often the most challenging part when it

comes to designing a soccer robot, so we decided to buy omni

wheels from GTF robots shop. For motors, we decided to use Pololu

#3202, with the speed of 1000 RPM.

Results: QRE1113 line sensors have not been functioning well in

detecting the line. So, we decided to opt for our own self-made line

sensors from IR led and IR phototransistor. We made a few tests

with different types of IR LEDs and phototransistors to see which

two of them were the most compatible.

Version 3

Except of minor changes to weight distribution and a change of line sensors, it was the same as the second

one.

We decided to use the circular pattern of the line sensors since the wedge starts only 2 cm behind the line

according to the new rules. The robot could determine position of the line more precisely this way.

This is the final version of the robot.

Camera selection

Firstly, we decided to place the camera to the front of the robot, but that was later changed to camera

being mounted on the handle of the robot, in the favor of larger field of view.

First tested camera – Raspberry Pi Camera Module 2 with IMX219 drop-in camera sensor

• unusual purple haze was visible all around the edges of the image

• customized the IMX219 tuning file

(/usr/share/libcamera/ipa/raspberrypi/imx219.json)

Figure 1: First robot prototype

Figure 2: PCB layout of the first prototype

https://www.nxp.com/docs/en/data-sheet/MC33886.pdf
https://www.pjrc.com/store/teensy41.html
https://www.st.com/resource/en/datasheet/vnh5019a-e.pdf
https://www.pololu.com/file/0J117/QRE1113GR.pdf
https://datasheet.lcsc.com/lcsc/1811081616_XLSEMI-XL4015E1--_C51661.pdf
https://gtfrobots.com/
https://www.pololu.com/product/3202
https://www.pololu.com/product/3202
https://www.raspberrypi.com/products/camera-module-v2/
https://rlx.sk/en/camera-module/6732-imx219-camera-module-160-degree-fov-ws-15264-imx219-d160.html

3

o removed values from Automatic lens shading correction parameter to revert it to the

default state.

• result was a green haze in the center of the picture

o better – it does not interfere very much with colors intended to detect

Second tested camera – Raspberry Pi Camera Module 3 Wide

• newer, supposed to be better in everything

• autofocus

o turned out to be a problem

o vibration caused by motion shook the lens

o worse than the first one

Third tested camera – Arducam B0310

• same sensor as the second camera

• manual focus

• no problems

Second robot

Around a month before our Slovakian RoboCup, we decided to make the

second robot since we had some time to spare. This second robot was an

identical copy of the first one, except of the wheels, since we did not want

to spend another 200 EUR on GTF robot wheels. So we made our own.

They have less friction than the GTF robots ones, but they are useable.

Also, we only had 2 more VNH5019 – we had to use the older model,

VNH2SP30. They are mounted on their breakout boards on the top board,

because we did not want to solder not fully compatible ICs on the board.

After a bit of programming, we realized that our motors (Pololu #3202) were way too weak to move the

robot to any direction – we were only able to move in multiples of 45 degrees, otherwise some of the

motors completely stopped moving. After the Slovakian RoboCup Junior we bought Pololu #3203, which

are twice as strong and replaced the motors on the second robot with them.

3. Hardware

1. Mechanical Design and Manufacturing
The chassis design was designed using Fusion 360. The main structure of

the body are the two PCBs, only the handle, mounting elements and

features on the PCBs are 3D printed (white on Figure 5).

This allows the robot to have all the

components directly on the surface of

the body so it saves more space.

The bottom board is connected to the

top board via 8 screws. We decided to 3D

print a protection for our bottom board

so no other robot could damage ours in

any way. Figure 4: Render of the robot's chassis

Figure 3: self-made omni wheel

Figure 5: Bottom board protection

https://www.raspberrypi.com/products/camera-module-3/?variant=camera-module-3-wide
https://www.arducam.com/product/presalearducam-12mp-imx708-hdr-120-wide-angle-camera-module-with-m12-lens-for-raspberry-pi/
https://www.st.com/en/automotive-analog-and-power/vnh2sp30-e.html
https://www.pololu.com/product/3203

4

The top PCB has mounting holes for a battery holder, which stops the battery

from moving around. The battery is tied with Velcro so it will not fall out.

The handle is also connected to the top board via 4 screws on the side of the

robot.

All the components were designed with integrity and robustness in mind.

Anytime the component breaks, we make another, stronger one.

2. Electronic Design and Manufacturing

Bottom PCB

• 4x Pololu #3202

• 4x VNH5019

• 16x OSRAM SFH-4656 + Knightbright AP2012P3C

• 1x Teensy 4.1

• 1x XL4015

Top PCB

• 3 buttons (to help manipulating with the robot)

• 0,91“ SSD1306 128x32 I2C OLED display

• Adafruit BNO055 IMU

• Raspberry Pi 4

• Arducam B0310

We decided to use Raspberry Pi since we already have some experience with it and BNO055 since it is one

of the best IMUs and we were never let down by it before.

4. Software

1. General software architecture

Figure 7: Final version of the robot

Figure 6: Handle and battery
holders

https://www.pololu.com/product/3202
https://www.st.com/resource/en/datasheet/vnh5019a-e.pdf
https://ams-osram.com/products/leds/ir-leds/osram-midled-sfh-4656
https://www.kingbrightusa.com/images/catalog/SPEC/AP2012P3C-P22.pdf
https://www.pjrc.com/store/teensy41.html
https://datasheet.lcsc.com/lcsc/1811081616_XLSEMI-XL4015E1--_C51661.pdf
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.arducam.com/product/presalearducam-12mp-imx708-hdr-120-wide-angle-camera-module-with-m12-lens-for-raspberry-pi/

5

Low Level (multiproccesing)

Architecture of our software is based on multiprocessing. Program is divided into multiple processes
which can utilize all 4 cores of Raspberry Pi and achieve significant performance boost in comparison with
single core application.

Each IO component of the robot (for example: camera, compass, ...), which is later referred to as interface,
runs in the separate process. This process is launched through wrapper which is called module. Module
is the class where you can define function which will be executed on the separate process and shared
variables.

Communication between modules is done through shared memory.

Figure 8: Module methods

Currently there are 7 main modules in our program:

Table 1: Module descriptions

Module Main task Output

Bluetooth Module * Communication with another

robot

Data from other robot (see ball,

heatmap)

Camera Module Camera image processing Position and size of the ball and

goal in the frame

Compass Module Reading data from BNO055
compass module

Heading of the robot

Logger Module Logging of the data from any

module to file

-

UI Module Communication with UI elements

(buttons, display)

States of buttons

Undercarriage Module Communication with bottom PCB Values from line sensors

Visualizer Module Hosting server for visualizer client
on another computer

Calibration data

Camera Module takes care of processing of frames from camera. OpenCV is used to detect specific colors
in the image. There are multiple steps in process of color detection.

1. Raw frame is read from Camera
2. Raw frame is cropped so only part of the image which contains the playfield is kept

Module

init
called at the start, in the

main process

shared variables defined
here

on_run
called at the start in

the module's process

on_stop
called at the end

of the process

...
module-specific

functions

6

3. Cropped frame is converted from RGB to HSV
4. OpenCV is used to find contours in the HSV frame
5. Bounding box is created around the longest contour

Figure 9: Object detection process

Logger Module is built upon python logging library. Multiprocessing queue is used to log data from any
module. Logs are also formatted for better debugging.

Figure 10: Example log

The biggest advantage of this architecture is that the end user (someone who would program strategy)
does not have to deal with anything connected with multiprocessing. If any data is needed, getter on the
module can be called to obtain them.

Bluetooth Module is based on Blue Dot library. Robots communicate via Bluetooth to ensure more
efficient gameplay. If one of the robots is closer to the ball, the other retreats to our goal to defend

High level code (Strategy)
Main strategy of our robot is based on behaviors, which are executed when some conditions are met. In
the diagram above, visual representation of this can be seen.

Raw
frame

Cropped
frame

HSV
frame

Contours
Bounding

box

Figure 11: Playing strategy flowchart

7

Main idea of the robot is to get to the position where the ball angle is between angles of the goal. From
this position goal can be scored. To get in front of the ball, angle which has to be set to motors is required.
Calculation of this angle can be done using trigonometry.

Figure 12: Calculation of the target position

If we define:
bd – ball distance, ba – ball angle, fd – final distance

𝑐  = √𝑏𝑑2 + 𝑓𝑑2 − 2 ⋅ 𝑏𝑑 ⋅ 𝑓𝑑 ⋅ cos(𝑏𝑎)

target angle = cos−1 (
𝑐2+𝑏𝑑2−𝑓𝑑2

2⋅𝑐⋅𝑏𝑑
)

If the goal is not seen, the robot uses compass, to shoot the ball to opponent’s goal direction. This
approach is not as precise as goal shooting.

If the ball is not seen, the robot performs a ball finding algorithm, which consists of going back for a fixed
amount of time and then rotating.

Line detection has the highest priority in deciding – meaning that if robot sees ball, line avoiding is
triggered no matter what other interfaces says.

The robot calculates the vector to the supposed line in multiple steps:

8

Figure 13: Calculating line position

1. Get the array of sensors that see the line (S1, S2, S3)

2. Find the marginal ones (largest angle between them – S1, S2)

3. Calculate the height of the S1S2A triangle and angle of the height from the front:

ℎ =
𝑟1𝑟2 ∙ sin(𝛽 − 𝛼)

√𝑟1
2 + 𝑟2

2 − 2𝑟1𝑟2 ∙ cos(𝛽 − 𝛼)

𝛾 = 𝛼 + cos−1 (
ℎ

𝑟1
)

𝑟1, 𝑟2 − 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟

𝛼, 𝛽 − 𝑎𝑛𝑔𝑙𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑛𝑜𝑟𝑡ℎ

5. Innovative solutions

Multiprocessing

Building our code around multiprocessing was the idea which makes things a lot faster. This approach is
suitable for all projects where multicore computer is used. Thanks to our simple API, usage of multiple
processes was not that hard as it might looks like. This is the thing we would recommend to other teams
if their robot struggles with performance.

6. Performance evaluation
Visualizer
To evaluate performance, we made a visualizer in C++, which is communicating with our program through
websockets. Data from robot are displayed there and there is also an option to calibrate camera detection,

9

line detection and motor speeds. Having this type of debugging tool helped us tweaking our robots to
make them play just right.

Figure 14: UI of the visualizer

Line calibration
To help solve line detection issues we made a program that saves values from line sensors into an huge

array and with the help of excel we can transform this data into graphs, from which we can easily deduct

the current issue or can be used to set the line detection value. We can also input custom movements and

while these movements take place, the program will save the values from line sensors (we are able to

read line sensors about 4 times per millisecond).

Figure 15: Graph of sensor values in time

10

7. Conclusion
Overall, we think that we learned a lot during the development of our robots. Although we did not manage
to complete all our goals, we created our best robots yet. We designed our own PCBs, with 16 line sensors,
4 motors, wide angle camera and advanced software. This all combined created robots we are very proud
of. We hope that we will be able to improve it even more in the future.

Appendix
● PCB schematics are available here

● Videos from development

• https://youtu.be/nhbiG_MRE0U

• https://youtu.be/kWrHDDubLJQ

• https://youtu.be/ZqXnQKk4cL0

• https://youtu.be/EfiDgmioZJE

References
Libraries used

• Main program
o OpenCV – image processing
o Multiprocessing – management of processes
o Websockets – sending and receiving data through websockets
o PiCamera2 – controlling and receiving frames from camera

o Pillow – creating image for UI display

o Bluedot – bluetooth communication

o CircuitPython – display and compass communication

• Undercarriage

o ArduinoJson – Parsing of JSON in Teensy

• Visualizer

o ImGui – UI panels
o GLFW – window creating
o GLAD – OpenGL Loader
o stb_image – image parser
o Websocketpp – websocket communication

https://gamca-my.sharepoint.com/personal/misiak1_gamca_sk/Documents/RoboCup/RoboCup%202023/schematic.pdf
https://youtu.be/nhbiG_MRE0U
https://youtu.be/kWrHDDubLJQ
https://youtu.be/ZqXnQKk4cL0
https://youtu.be/EfiDgmioZJE
https://opencv.org/
https://docs.python.org/3/library/multiprocessing.html
https://websockets.readthedocs.io/en/stable/
https://github.com/raspberrypi/picamera2
https://pillow.readthedocs.io/en/stable/
https://bluedot.readthedocs.io/en/latest/
https://docs.circuitpython.org/en/latest/
https://arduinojson.org/v6/doc/
https://github.com/ocornut/imgui
https://www.glfw.org/documentation.html
https://github.com/Dav1dde/glad
https://github.com/nothings/stb
https://github.com/zaphoyd/websocketpp

